大数据下的财报分析(行业财报数据分析)

如何使用大数据分析的方法对财务指标进行数据分析?

1、垂直分析:主要是分析总体与部分之间的比例,对于某个项目占总体报表项目的比重,又叫做结构分析。

第一步,首先计算确定财务报表中各项目占总额的比重或百分比。第二步,通过各项目的占比,分析其在企业经营中的重要性。一般项目占比越大,其重要程度越高,对公司总体的影响程度越大。第三步,将分析期各项目的比重与前期同项目比重对比,研究各项目的比重变动情况,对变动较大的重要项目进一步分析。

2、水平分析:主要是横向分析报表中变化率最大的项目,将财务报表各项目报告期的数据与上一期的数据进行对比,分析企业财务数据变动情况。

水平分析进行的对比,一般不是只对比一两个项目,而是把财务报表报告期的所有项目与上一期进行全面的综合的对比分析,揭示各方面存在的问题,为进一步全面深入分析企业财务状况打下了基础,所以水平分析法是会计分析的基本方法。

3、趋势分析:趋势分析,是一种长期分析,计算一个或多个项目随后连续多个报告期数据与基期比较的定基指数,或者与上一期比较的环比指数,形成一个指数时间序列,以此分析这个报表项目历史长期变动趋势,并作为预测未来长期发展趋势的依据之一。

趋势分析法既可用于对会计报表的整体分析,即研究一定时期报表各项目的变动趋势,也可以只是对某些主要财务指标的发展趋势进行分析。

4、比率分析:将两个财务报表数据相除得出的相对比率,分析两个项目之间的关联关系。

财务比率一般分为四类:盈利能力比率,营运能力比率,偿债能力比率,增长能力比率。

5、因素分析:又称连环替代法,用来计算几个相互联系的驱动因素对综合财务指标的影响程度的大小。比如,销售收入取决于销量和单价两个因素,企业提价,往往会导致销量下降,我们可以用因素分析来测算价格上升和销量下降对收入的影响程度。

6、比较分析:包括两个方面,一是企业内部的指标数据分析,比如销售额;二是和最主要的竞争对手进行对比分析,内容包括竞争力、财务能力等。

《大数据时代下财务管理分析》这本书对于财务管理专业学习有什么作用呢?

1.

提高财务管理工作效率 大数据通过全新的处理模式,对多样化、快速增长的海量信息资产加以分析利用,显著提高了财务管理工作效率,提供更强的决策力、洞察发现力和流程优化能力。大数据技术和先进分析工具的运用,有助于高效处理大量结构化和非结构化的财务数据,实现了财务数据处理工作的批量完成,辅助财务管理者更快完成信息检索和分析,促进财务管理各个环节运行更加高效。

2.

拓展财务管理工作效益 传统上,财务数据只是企业经济业务活动的忠实记录,到了大数据时代,数据信息资源虽然不能直接创造价值,却可以成为企业发展的催化剂、助推剂

在大数据分析时 例如资产负债表 利润表这样的财报数据表属于什么表?

属于财务报表。

随着互联网信息的高速发展,大数据应用已经成为市场经济下各大企业的主流应用。大数据时代给了市场经济新的活力。上市公司作为市场经济中的龙头企业,更是在财务报表以及财务分析上侧重于应用大数据来科学整合分析财务信息。大数据时代下的财务分析可以从众多的财务数据信息中提取关键信息,对相应条件下的财务报表进行完善和补充修改。因而将大数据时代与财务信息管理进行融合,才会使财务信息的提取更加便捷化、时效化、科学化。

希望帮助到你。

大数据背景下的审计分析方法有哪些?

一、“大数据”时代的数据挖掘的应用与方法

数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。所以它所得到的信息应具有未知,有效和实用三个特征。因此数据挖掘技术从一开始就是面向应用的,目前数据挖掘技术在企业市场营销中得到了比较普遍的应用。它包括:数据库营销、客户群体划分、背景分析、交叉销售等市场分析行为,以及客户流失性分析、客户信用记分、欺诈发现等。审计部门的数据挖掘以往偏重于对大金额数据的分析,来确实是否存在问题,以及问题在数据中的表现,而随着绩效审计的兴起,审计部门也需要通过数据来对被审计单位的各类行为做出审计评价,这些也都需要数据的支撑。

数据挖掘的方法有很多,它们分别从不同的角度对数据进行挖掘。其中绝大部分都可以用于审计工作中。1. 数据概化。数据库中通常存放着大量的细节数据,

通过数据概化可将大量与任务相关的数据集从较低的概念层抽象到较高的概念层。数据概化可应用于审计数据分析中的描述式挖掘,

审计人员可从不同的粒度和不同的角度描述数据集, 从而了解某类数据的概貌。大量研究证实, 与正常的财务报告相比,

虚假财务报告常具有某种结构上的特征。审计人员可以采用概念描述技术对存储在被审计数据库中的数据实施数据挖掘,

通过使用属性概化、属性相关分析等数据概化技术将详细的财务数据在较高层次上表达出来, 以得到财务报告的一般属性特征描述,

从而为审计人员判断虚假财务报告提供依据。2.统计分析。它是基于模型的方法, 包括回归分析、因子分析和判别分析等,

用此方法可对数据进行分类和预测。通过分类挖掘对被审计数据库中的各类数据挖掘出其数据的描述或模型,

或者审计人员通过建立的统计模型对被审计单位的大量财务或业务历史数据进行预测分析, 根据分析的预测值和审计值进行比较, 都能帮助审计人员从中发现审计疑点,

从而将其列为审计重点。3. 聚类分析。聚类分析是把一组个体按照相似性归成若干类别, 目的是使得同一类别的个体之间的距离尽可能地小,

而不同类别的个体间的距离尽可能地大, 该方法可为不同的信息用户提供不同类别的信息集。如审计人员可运用该方法识别密集和稀疏的区域, 从而发现被审计数据的分布模式,

以及数据属性间的关系, 以进一步确定重点审计领域。企业的财务报表数据会随着企业经营业务的变化而变化, 一般来说,

真实的财务报表中主要项目的数据变动具有一定的规律性, 如果其变动表现异常, 表明数据中的异常点可能隐藏了重要的信息,

反映了被审计报表项目数据可能存在虚假成分。4. 关联分析。它通过利用关联规则可以从操作数据库的所有细节或事务中抽取频繁出现的模式,

其目的是挖掘隐藏在数据间的相互关系。利用关联分析, 审计人员可通过对被审计数据库中的数据利用关联规则进行挖掘分析, 找出被审计数据库中不同数据项之间的联系,

从而发现存在异常联系的数据项, 在此基础上通过进一步分析, 发现审计疑点。

二、应对“大数据”时代,审计分析应做出的调整

从以上分析过程中,我们不难看出“大数据”时代的数据存贮、处理、分析以及挖掘的各个方面虽然与传统方式相比,在技术层面上有了较大的改变,但是在基本的原理方面并没有显著的改变,原有的审计分析模式没有必要因为“大数据”时代的来临而急于做出相应的改变。然而“大数据”时代在给审计分析带来机遇的同时,还是给我们带给了相当大的冲击,对此我们有必要引起相当的重视,并在日后的信息化建设过程做出相应的调整。

1、数据的存贮与处理。大数据分析应用需求正在影响着数据存储基础设施的发展。随着结构化数据和非结构化数据量的持续增长,以及分析数据来源的多样化,此前存储系统的设计已经无法满足大数据应用的需要。基于块和文件的存储系统的架构设计需要进行调整以适应这些新的要求。审计部门在选择相应的存贮系统的时候,要对非结构化数据有足够的重视,做好采集的相关准备。同时随着采集数据的单位和年份越来越多,数据量必然是会有大规模的增长。即使是海量数据存储系统也一定要有相应等级的扩展能力。存储系统的扩展一定要简便,可以通过增加模块或磁盘柜来增加容量,甚至不需要停机。同时,为了提高数据的处理能力,解决I/O的瓶颈问题,可以考虑各种模式的固态存储设备,小到简单的在服务器内部做高速缓存,大到全固态介质可扩展存储系统通过高性能闪存存储都是可以考虑使用的设备。

2、非结构化的数据处理。非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。

3、可视化的分析。数据分析的使用者有数据分析专家,同时还有普通用户,但是他们二者对于数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。

“一个平台、两个中心”建设,是审计署目前信息化建设的重要内容。通过数据中心的建设,可以在相当程度上解决数据存储与处理的问题;而数据式审计分析平台,同样可以在一定程度上实行可视化分析的相当一部分功能,但是对于越来越庞大的非结构化数据的存储和处理,将会是审计部门接下来所面临的最大的挑战。